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Abstract: This paper explores the problem of atmospheric turbulence in long range video
surveillance. This turbulence causes a phenomenon called heat scintillation or heat shimmer which
introduces distortions into the video being captured. The nature of these distortions is discussed and a
number of possible solutions explored. Using these solutions, three algorithms are implemented to
attempt to mitigate the effects of heat shimmer. Within this field there is very little subject matter on
the topic of objectively comparing the performance of heat shimmer reduction algorithms. A set of
possible metrics is proposed in this paper and used to compare the performance of the implemented
algorithms. These results provide insight into the nature of the algorithms and the effectiveness of the
metrics under consideration.
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I.  INTRODUCTION

The rapid advancement of digital image capture
technology has resulted in the development of many
technologies devoted to making use of these captured
image and video signals [1, 2]. These signals can be
captured in a variety of circumstances and more ofien
than not contain a variety of distortions and noise. This
degradation is the result of various factors, including the
nature of the hardware used to capture the signal and
external environmental factors such as lighting and
camera jitter [2]. These signals are often used not only by
a human operator who could deal with poor quality video,
but also automated processing systems that make use of
the video signal to automatically gather information about
the scene. For these systems quality degradation is a
serious problem [1, 2, 3].

Imaging systems are capable of very high magnifications.
These kinds of systems are used for long range video
surveillance. In the case where the target scene is being
viewed from a range of more than 1 km the effects of
atmospheric turbulence become apparent [1, 4].

Turbulence in the atmosphere causes pockets of air of
varying temperatures and thus densities to move in a
random fashion. This movement is caused by the varying
densities of the air pockets, wind and terrain. Light from
the target scene must travel through this turbulent
atmosphere to reach the imaging system. The varying
densities of the air pockets cause this light to be refracted
by varying degrees and in a continually changing manner.
This results in the target scene appearing blurred and to
be wavering or shimmering. This means that objects in

the scene will appear to be moving even when stationary.
This effect is dubbed heat shimmer [1, 3, 4, 5, 6, 7].

Heat shimmer severely limits the range of long range
imaging systems, and as such, mitigating the effects of
atmospheric turbulence is a major concern when
designing these systems [1, 4, 6, 7].

There are two main schools of solution to this problem.
The first is to make use of a mechanical adaptive optics
system to physically compensate for the effects of the
atmospheric turbulence on incoming light rays [11]. The
second solution is to make certain assumptions about the
nature of the distortion and make use of an image
processing approach to digitally enhance the video signal
to attempt to reduce the distortion. A few proposed
image processing methods are the direct Discrete Fourier
Transform (DFT) solution [4], image registration and
fusion [1], Adaptive Control Grid Interpolation [6, 7],
Image Time Sequence Registration [8], Neural Network
approach based on the Monte Carlo [9] and
Homomorphic and Power Spectrum approach [10].

While a number of techniques have been proposed to deal
with the problem of heat shimmer there has been little
work done to find methods of comparing the
effectiveness of these techniques. This is primarily due to
the fact that it is very difficult to obtain ground truths of
real world heat shimmer distorted video. This paper
describes the implementation of three algorithms that
mitigate the effects of heat shimmer. A number of
performance metrics are proposed for use in comparing
the effectiveness of these algorithms. Using the proposed
metrics the performance of the implemented algorithms
are compared. The results will show which of the
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proposed metrics are viable measures of performance for
these types of algorithms.

The other focus of this paper is to start on the road to
developing a real-time implementation of a heat shimmer
mitigation algorithm. These algorithms are very
computationally intensive and there is no account in the
literature of how a real-time implementation could be
achieved. This paper will explore the use of Graphics
Processing Units (GPUs) as tools to accelerate the
processing time of these types of algorithms.

The remainder of this paper will be arranged as follows.
Section II will give an overview of the implemented
algorithms. Section 111 will describe the details of a GPU
implementation of one algorithm. Section IV will
describe the proposed performance metrics and Sections
V and VI will described the experiments and results.
Finally VII will present the conclusion.

2. Overview of Algorithms

The algorithms implemented in this paper classify the
effects of heat shimmer on long range video into two
forms of distortion as described in [6, 7]. The first effect
of heat shimmer is to cause photometric distortion or
blurring of the scene being viewed. The second effect is
geometric  distortion which produces an apparent
wavering motion of elements in the scene. An assumption
is made that the geometric distortion is quasi-periodic.
This means that any given point in the scene should
oscillate periodically around its true position. The
algorithms in this paper seek to reduce the effects of heat
shimmer by tackling each of the above described
distortions.

1.1 Averaging and Wiener filtering algorithm

This algorithm was developed in conjunction with [23]
with the intention of developing the simplest possible
technique to mitigating the problem of heat shimmer. The
algorithm tackles each of the distortions introduced into
the captured video by heat shimmer independently.
Firstly the algorithm seeks to reduce the amount of
geometric distortion in the video sequence by exploiting
the assumption that the geometric distortion is quasi-
periodic. To do this a simple ratio averaging scheme is
used to maintain a running average of the frames in the
sequence as shown in the following equation:

g,y t) = af(x,y)+ (1 —a)glx,y, t — 1), (N

Where:

x, y = the pixel coordinates in an image frame
¢ = the current frame in the sequence

g(x.y,t) = updated ratio frame average
g(x,y,t-1) = the previous frame average

f{x,y) = the current incoming frame

o = a scalar value between 0 and 1
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o is chosen for the algorithm and controls the weighting
of the ratio of the current frame and the previous frame
average that appears in the new frame average. The
quasi-periodic motion in the sequence is thus averaged
out to zero. The down side of this process is that the
averaging operation introduces blur into the sequence in
addition to the photometric distortion already present.

The second stage of the algorithm addresses the
photometric distortion. This step makes use of a model of
the blurring effect of the atmosphere and a Wiener filter
that allows one to filter out the blur represented by this
model from the video sequence to produce a sharper
image. The following equation shows the transfer
function of the Wiener filter [2, 13]:

H

Hw =
S ’
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|H|? + /SF

(2)

Where:

Sy =power spectrum of the additive noise

Sy = power spectrum of undistorted the image

H = the model of the distortion

H,, = the Wiener Filter based on the specified model

The modulation transfer function (MTF) used as a model
for this process was presented by Hufnagel and is shown
below [12]:

H(u, U') — e,A(u2+v2Jsf6, (3)

Where:

. = parameters that controls the amount of blur present in
the model

u and v = the 2 dimensions of the spatial frequencies.

The noise-to-blurred signal ratio is estimated as the
difference between the global variance of the whole
frame and the average local variance. This is due to the
fact that the noise and the blurred image are uncorrelated.
The NSR is thus estimated using the following equation:

Local Variance 4)

= Global Variance — Local Variance'

The primary issue with this process is that the nature of
blurring effect of the atmosphere is completely unknown
and needs to be determined using only the distorted video
sequence.

This is done by defining a search space of plausible
values for % and applying the Wiener filter to the current
frame for each of these values and then using a metric to
determine which of the A values results in the sharpest
output. The sharpness metric used to measure the
sharpness of the resulting frame is based on the Laplacian
operator which is defined as follows [14]:
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(5)

Where:
I = the 2-dimensional intensity map of the image.

The effect of this operator can be approximated by the
following discrete kernel [11].

Figure 1: Laplacian operator approximation kernel

This kernel is applied to the image and accentuates areas
of high spatial frequencies such as edges and reduces the
intensities of areas of uniform colour. After the operator
is applied the average intensity is found of the result. The
more high frequency content there is in the image the
higher this metric will be and thus the sharper the image
appears. This allows us to find which value of A resulted
in the sharpest image and use that frame as the output of
this stage of the algorithm. In [7] it is proposed to use the
kurtosis of the image as a sharpness metric.

Both the sharpness metric mentioned above are time
domain metrics which is a disadvantage when working
with the Wiener Filter as the Wiener Filter is a frequency
domain filter. This means that an incoming frame needs
to have the Fast Fourier Transform (FFT) performed on it
before it can be filtered. Then after the frame is filtered
for each value of & it will need to have the Inverse Fast
Fourier Transform (IFFT) performed before the time
domain sharpness metrics can be used.

It is proposed that a frequency domain sharpness metric
be used so that only one FFT and IFFT operation needs to
be performed per frame. The frequency domain sharpness
metric designed for this task measures the power present
in the high frequency bands of the image. This is done by
finding the magnitude of the FFT values in the area
described in figure 2.

In the figure the DC value is assumed to be at the centre.
The range of frequency values measured fall into the light
grey area described by the normalized coordinates. This
area of measurement was found experimentally to give
the most reliable sharpness measurements. The flow
diagram of the entire algorithm is presented in figure 3.
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Figure 2: Frequency domain sharpness metric area of
measurement. DC value assumed to be at centre.

2 WIENER FILTERING AND OPTICAL FLOW
BASED DEWARPING ALGORITHMS

The following two algorithms are based on the work of
[6, 7] and are chosen due to the fact that they follow the
same paradigm as the first algorithm. This paradigm
treats the effects of heat shimmer as two separate
distortions, photometric and geometric. These approaches
first deal with the photometric distortion and adhering to
the same paradigm means we can make use of the Weiner
Filtering and Sharpness metric based method used in the
first algorithm.

These algorithms however use a different approach to
dealing with the geometric distortion as suggested in [6,
7]. An optical flow technique is used to map the
movement of all the pixels from one frame to the next in
the video sequence. Optical flow techniques produce a
vector field that describes the motion of all the pixels
between two video frames. The two optical flow
algorithms implemented were the Lucas-Kanade [14] and
Horn-Schunk [15] algorithms, which are the most
common optical flow techniques. Both of these
algorithms make use of differential methods to determine
the optical flow between two frames.
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Figure 3: Averaging and Wiener filtering algorithm block
diagram
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The general assumption made by these algorithms is that
while pixels are moving from frame to frame, their
intensities should not change significantly. Based on this
assumption each algorithm defines a constraint equation
that can be solved to find the optical flow for the given
two frames which are captured at times ¢ and r+dr. The
motion for every pixel position is calculated by these
techniques.

The Lucas-Kanade algorithm [14] makes use of the
following constraint equation:

Ioept) = I(x + dxy + Sy, + d1), (6)

Where:

Ifx,y,t) = the pixel intensity at the spatial coordinates x,y
and the temporal coordinate /.

dx, dy, ot = the distance that the pixel has moved between
the two frames.

The equation states that the pixel intensity in the first
frame will be the same at its new position in the second
frame [14, 16]. Optical flow algorithms generally suffer
from the Aperture problem, which means that the
information contained within the two frames under

consideration is not enough to solve for the velocity of

every pixel in both the x and y dimensions. In the Lucas-
Kanade algorithm this problem is overcome by assuming
that the optical flow inside a small sub window of the
frames centred around the current pixel under
consideration is constant. By using a Taylor series
expansion of equation 6 and using the least squares
method, the following equation can be derived which
describes how to calculate the x and y velocities of the
pixel at the centre of the current window.

g-En el

Where:

i = l...n where n is the number of pixel elements in each
window centred at x and y.

V,, V, = the velocities of a given pixel in the x and y
directions.

We also define the following to represent the differentials
used in this method:

=1 I and

‘é; X a = It': (8)

The Horn-Schunk algorithm [15] is similar to the Lucas-
Kanade method in that it makes use of the differentials
between the two frames but it overcomes the Aperture
problem by introducing a global smoothness constraint o.
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The following equation is the energy function, in two
spatial dimensions, that is minimized to find the optical
flow [15]:

E= f f (LV + LV, + 1) dxdy

raf [5G

dy
av\:  [av\?
e oy
+(ax) +(6‘y) ]dxdy

Using the Jacobi method to minimize this equation
iteratively the following equations are found:

9
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vk vk
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Where:

ﬁ ; ﬁ = the average of these velocity values in the local
neighbourhood.

The Horn-Schunck method produces dense optical flow
fields but is fairly sensitive to noise. The above
techniques can be used to produce vector fields
describing the motion of every pixel between two frames.
[f we make the assumption that the geometric distortion
caused by heat shimmer is quasi-periodic [6, 7], we can
use the optical flow data to find the true position of the
pixels in a video frame. To do this for a specific frame, a
window of frames around that frame is chosen and the
optical flows between the current frame and each other
frame in the window is calculated.

If the motion present in the frames is quasi-periodic,
taking an average of the optical flow vectors should
reveal the true position of each pixel as that pixel would
have been wavering around its true position. This data is
then used to move the pixels to their correct positions.
This process can leave holes in the resulting image,
which are filled in using the mean intensity in the current
windows of frames at that position. The following figure
shows the flow diagram of the algorithm.,
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Figure 4: Wiener filtering and Optical flow based
algorithm block diagram

3 GPU IMPLEMENTATION

Image processing technology is maturing very quickly
and we have been seeing its real world application for a
few years now. However, the standard CPU based
computing platforms are still struggling to provide
enough performance in order to implement image
processing theory in a practical way. This is even true of
the newest multi-core processors that are now available.
This lack of performance has driven the use of non-
standard platforms, such as the FPGA, for these tasks,
and these platforms are expensive and difficult to develop
for.
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In recent years the Graphics Processing Unit (GPU) has
emerged as a possible solution to this dilemma. GPUs are
found on the commercial off-the-shelf graphics cards that
we have been using for years for the express purpose of
rendering graphics for video games. Recently GPUs have
become user programmable and able to support floating
point precision calculations. It has become apparent that
for applications that can make use of their parallel stream
processing architecture that GPUs can far outstrip CPU in
price and performance.

A GPU can be seen as a parallel stream processor. This
means that the GPU contains a number of processing
pipelines each capable of processing an element of data
independently and in parallel with the other pipelines.
This architecture is useful when performing the same
kernel or operation on each element of data in a set of
data. As can be seen in Figure 5 this architecture has far
less cache and control overhead than that of a traditional
CPU. This is because each pipeline is self contained and
once data is in the pipeline it does not need any further
input until after the data emerges from that pipeline.

AU ALY
Control
| AW AL

CPU

GPU

Figure 5: CPU vs. GPU architecture [17]

In the GPU data is represented as vertices, which are
points in the co-ordinate system defined in the GPU, and
textures or colours which are mapped onto the vertices.
The graphics pipeline in a typical GPU is roughly
summarised in figures 6 and 7 [18].
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Figure 6: Visualisation of pipeline functions [18]

The parts of the pipeline that we are most interested in are
parts whose functionality we can replace with our own
programs. These are the vertex transformation stage and
fragment texturing and colouring stage [18].
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The process begins by taking the vertices, which are
points in space that have colours, normals and texture
coordinates associated with them, and transforming their
characteristics. The next step is connecting each of the
related vertices into lines and polygons. The next step is
the step where the majority of the processing will be
done. In this step the frame being rendered is rasterized.
This means that the frame is divided into elements or
fragments each representing a pixel in the frame. The
texture and colour information of the vertices is then used
to define the colour for each fragment in the scene. We
will replace the fixed functionality with our own
program. These programs are called the vertex and
fragment shaders. The respective shaders are executed
once for each vertex in the frame and once for each
fragment in the frame [18].

The vertex and fragment shaders are invoked by
rendering a quad, which is a rectangle with a vertex at
each corner, which is exactly the size of the texture we
want processed. The vertex shader is called once for each
corner of the quad and the texture is rasterized in such a
way that each fragment corresponds exactly to a pixel in
the texture. Our fragment shader is executed exactly once
for each of these fragments [18, 20].

For this project OpenGL was selected as the API used to
interface with the GPU hardware. GLSL was selected as
the shader scripting language. These selections were
made primarily due to the platform portability of
OpenGL and GLSL [19].

By default OpenGL will render its output to the screen
but it is possible to use the FrameBuffer extension to
redirect the rendered output to a frame buffer which has
been linked to a texture. This allows one to use that
output as the input for another rendering pass or to send
that data back to the CPU after it has been processed [21].
This is critical for recursive algorithms.

The Lucas-Kanade based Wiener filtering and optical
flow algorithm was implemented on the GPU to give an
idea of the performance increases the GPU provides. The
majority of the algorithm was easily translated into the
parallel architecture of OpenGL as kernel convolutions
are easily implemented to be executed for each fragment.
The main issues encountered while porting the algorithms
to OpenGL were the implementation of recursive
algorithms, calculating the mean value of a texture and
the dewarping stage of the algorithm.

The main recursive stage in the algorithm was the
implementation of the decimation-in-time Fast Fourier
Transform (FFT) [22]. The FFT is a recursive algorithm
with a number of stages which are dependent on the
previous iteration of the algorithm. This recursion is
achieved using the ping pong techniques described in
[21]. This uses two frame buffers which switch roles as
the input to the current iteration and the storage space for

21



22

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

the output of that iteration. This allows us to perform
recursion with only two frame buffers.

While calculation of the mean of an image is relatively
trivial in a serial architecture on a parallel architecture it
presents a problem. A given shader program will be
executed for each fragment of a texture independently
and the shader program can not know the results of its
execution on any other fragments during a same
rendering step. This means there is no way to read the
values of all the fragments in a way that will exploit the
parallel nature of the GPU. To achieve the mean
calculation in parallel a recursive down-sampling
algorithm was used. In each successive stage of the
algorithm the texture was down-sampled by a factor of 2
resulting in a texture a quarter the size of the original.
This is repeated until the image is down-sampled into a
single fragment which will be average value of the entire
texture.

The most significant issue encountered during the GPU
implementation was the lack of support for scattering
operations in OpenGL 2. The Dewarping stage of the
algorithm required that a given pixel be moved to a new
location based on the average optical flow map. This is
not possible using only fragment shaders as when a
fragment shader is executed it can only affect the value of
the pixel it was executed for. This means that it is
impossible for a fragment shader to read from the average
optical flow map where the current fragment should be
moved to, and proceed to change the value of the
destination fragment. This problem was solved by
making use of the vertex shader. A grid of point vertices
was created, one for each pixel in the texture to be
dewarped. A Vertex shader was then written that is
executed once for each vertex being rendered. The shader
reads the vector describing where the current vertex
should be moved to from the average optical flow map.
The shader then modifies the position of the vertex
accordingly. The vertex is finally mapped with the colour
from the original position in the texture inside the
fragment shader.

4  OVERVIEW OF METRICS

Metrics and methods are used to measure frame per
second (FPS) performance and output image quality
improvement of the algorithms. The metrics and methods
used are:

Measurement of FPS performance;
Image sharpness measurement;
Aberration measurement; and
Modulation ~ Transfer ~ Function
measurement.

(MTF)

4.1 FPS performance

The FPS performance of the algorithms is related to the
algorithms complexity. The greater the complexity of the
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algorithm, the more resources and processing time it will
require and will result in a lower FPS measurement.

4.2 Image sharpness

The image sharpness measurement uses the Laplacian
Operator Sharpness Metric described in equation 5 to
obtain a value indicative of the image sharpness. A larger
value indicates a greater level of image sharpness.

4.3 Aberration

The aberration measurement measures the horizontal and
vertical displacement present in a video, this relates to the
geometric distortions due to atmospheric turbulence. The
horizontal and vertical displacement lengths are recorded
and compared to the other algorithms and unprocessed
video footage.

4.4 Modulation Transfer Function (MTF)

The modulation transfer function across spatial

frequencies is determined using:
I —ILpyin W—B

MTF - max mm, s {12)

Inax + Inin” W+B

Where:

1,10 = the maximum intensity value within that frequency

L yin = the minimum intensity.
W = the maximum luminance for white areas
B = the minimum luminance for the dark areas.

A higher modulation index is more desirable because
within a grey level image, the darkest and lightest grey
areas will be further apart and details will be more
pronounced.

5  EXPERIMENTAL SETUP

Each experiment required atmospheric turbulence
affected video footage. Using a constructed imaging
system as shown in figure 7, video footage was captured
of target charts setup 1.2km away.

The constructed imaging system consisted of a telescope
coupled to an internet protocol surveillance camera. The
telescope became the ‘lens’ of the surveillance camera.
The telescope used was a Celestron Nexstar 8 SE (8 inch
Schmidt Cassegrain telescope), the large diameter allows
a large amount of light to be collected, thus helping to
reduce exposure times. An Arecont AV3100 surveillance
camera was coupled to the telescope using a CS to 1.25
inch connector.

Each experiment made use of different target charts. In
order to control the level of uncertainty in the results, all
video footage was captured within one hour period to
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ey 1
Figure 7: Imaging System

avoid dramatic changes in atmospheric conditions. Video
footage was captured on a cloudless day to ensure
consistent lighting conditions and shorter exposure times.
Wind speed and direction was consistent over the period.

Each experiment made use of different target charts. In
order to control the level of uncertainty in the results, all
video footage was captured within one hour period to
avoid dramatic changes in atmospheric conditions. Video
footage was captured on a cloudless day to ensure
consistent lighting conditions and shorter exposure times.
Wind speed and direction was consistent over the period.

CPU Intel Core 2 Duo E6750 @ 2.66 GHz
Motherboard Asus PSK-Deluxe
RAM 2 GB DDR2 800 MHz

Table 1: Test PC Platform Specifications

5.1 FPS performance

The FPS performance of the algorithms is calculated
using the time taken to process 100 image frames. This
process was repeated 10 times for each video size and the
average presented here. The same video footage is used
for each of the algorithms so that results may be
comparable.

5.2 Image sharpness

Sharpness measurements are taken across 50 image
frames and an average calculated. Like the FPS
performance experiment, the same video footage is
processed by each of the algorithms and the sharpness
measurement is then taken of the outputted videos so that
results may be comparable.

5.3 Aberration

The aberration measurement is performed using a
checkered chart of which video footage is captured
through turbulent atmosphere. The video is then
processed by the algorithms to determine their abilities to
stabilize the footage. This method is similar to that used
in [23]. The checkerboard target used consists of 20cm
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in [23]. The checkerboard target used consists of 20cm
sized black and white squares. All the algorithms
processed the same video footage to ensure exposure to
and suppression of the same atmospheric turbulence
conditions. After processing the video footage, maximum
intensity values of the image are recorded for 50 image
frames and then a grey level threshold is taken to identify
square edges. The midpoint threshold value is determined
from the maximum and minimum intensity values of the
white and black blocks respectively. Horizontal and
vertical lengths of the squares are measured and an
average value calculated.

5.4 Modulation Transfer Function (MTF)

The MTF measurement experiment is similar to the
method used in [24]. The spatial frequency charts used
are viewed through atmospheric turbulence and the video
footage captured and processed by each algorithm. An
example of a spatial frequency chart containing various
spatial frequency sizes is shown in Figure 8.

Figure 8: Spatial frequency chart example

Spatial frequencies used ranged from 415mm/lp
(millimetre per line pair) to 10mm/Ip. The captured video
footage is processed by each of the algorithms and MTF
measurements taken for each processed video using
equation 12. The W and B intensity values are obtained
from the lowest frequencies.

To account for the geometric distortions that vary across
the video frames, a frame containing the maximum
intensity values and one containing the minimum
intensity values across 50 image frames are recorded.
Measurements are taken from these two frames. More
than 20 maximum intensity values are recorded and 7,
for that frequency is calculated from the average. 7, is
found in the same way for each spatial frequency except
using the minimum intensity image that was constructed
from the recordings.
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6  RESULTS

For each of the video quality metrics human assessment
was used to evaluate the effectiveness of the metric, and
whether the metric was providing a pertinent insight into
algorithm performance.

6.1  FPS performance

In this experiment a single 800x600 video sequence was
resized to create a set of video sequences of various sizes.
The CPU algorithms were run 10 times for each of the
video sequences and the average frames processed per
second was measured and recorded. The GPU
implementation of the Lucas-Kanade based Wiener
filtering and optical flow algorithm was executed on a
number of different nVidia GPUs and one AMD/ATI
GPU. The results of the experiment are presented in
figure 9, a logarithmic scale had to be used to represent
the results.

It can be seen that the CPU algorithms exhibit an
exponential increase in processing time as the size of the
videos increase exponentially. This was expected and

implementations. The Wiener filtering and Averaging
algorithm performs the best out of the CPU
implementations which was also expected, due to the fact
that it is a much simpler algorithm than the optical flow
based algorithms. The Lucas-Kanade based dewarping
algorithm is faster than the Horn-Schunck based
algorithm which is one of the reasons why it was chosen
for the GPU implementation.

The GPU implementation exhibited very little change in
processing time as the video sizes changed. This is due to
the fact that the FFT and filtering steps of the algorithm
need to use power-of-two sized textures and as such a
texture of size 1024x1024 or 512x512 was used for the
most intensive steps in the algorithm, and thus the
processing times were very similar, The jump from the
1024x1024 textures to the 512x512 textures can be seen
on the graph. This flat response is also due to the GPU’s
parallel nature allowing the GPU to scale with the
increased video size much more effectively than in a
serial architecture. At the largest resolutions the GPU
implementations provide a performance increase of 3

demonstrates  the serial nature of the CPU  rders of magnitude over the CPU algorithms.
10 m_ L iy
1 //’
g 0.1
&
0.01
0.001
800x600  700x525 600x450 500x375  400x300 300x225  200x150 100x75
—4—\Neiner filtering and Averaging algorithm == Lucas-Kanade based dewarping algorithm
= Horn-Schunck based dewarping algorithm === Nvidia 8800 GTS 640MB
== AMD/ATI 5770 Nvidia GTX 260

Figure 9: FPS Performance test results
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6.2 Image sharpness

This experiment makes use of the Laplacian operator
based sharpness measurement. A higher metric value
indicates a sharper image.

Figure 10 shows the sharpness measurements for video
processed using the Wiener filtering and Averaging
algorithm making use of the shown range of ratios used
in the ratio averaging portion of the algorithm. Also
shown is the sharpness measurement for the unprocessed
video

L?\Qlacian naetric valg_e
(9]

2 ' I T T T T T T T T T T T T T ) T T 1
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

] Avergaing Ratio )
== Averaging Algorithm - Unprocessed video

Figure 10: Wiener filtering and Averaging algorithm
sharpness results

Laplacian metric value

3 5 7 9 11
Frame size (n)

M Lucas-Kanade based Dewarping

algorithm
' Horn-Schunch based Dewarping

algorithm

Figure 11: Optical flow based dewarping algorithm
sharpness results

It is apparent that as the Averaging Ratio gets larger the
sharpness of the resulting video decreases. This is due to
the fact that the ratio dictates how much of the average
frame is retained as each frame of the video is processed.
It is apparent that the processed video is significantly
sharper than the unprocessed video.
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Figure 11 shows the sharpness measurements of the
Lucas-Kanade based Dewarping algorithm and Horn-
Schunck based dewarping algorithm. In this graph »
indicates the size of frame being used to find the average
optical flow that will be used to dewarp each frame. The
smallest frame size results in the sharpest image as the
dewarping operation occurs over fewer frames.

From figure 11 it is apparent that the Horn-Schunck
based algorithm produces better results when using this
metric. This however demonstrates a flaw with the metric
being used as when the output videos are assessed by a
human for both the Lucas-Kanade and Horn-Schunck
based algorithms it is apparent that the Horn-Schunck
video contains far more high frequency noise and is in
fact less sharp. The sharpness metric measures the high
frequency content in the frames and thus produces a
strong response to this high frequency noise. This gives
us these skewed results.

6.3 Aberration

The results of this experiment should illustrate the
severity of the geometric aberrations present in the video
sequence under consideration. The larger the
displacements measured the more severe the aberrations
in the video are.
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Figure 12: Displacement results

From figure 12 it can be seen that as expected the
horizontal displacements are far higher than the vertical
displacements due to the lateral effect of the wind. The
results show that all the algorithms produce a reduction of
the measured aberrations in the video and thus are
stabilizing the geometric distortion present in the video. It
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can be seen from the results that the Lucas-Kanade based
dewarping algorithm reduces the measured aberrations in
the processed video the most dramatically out of the 3
algorithms. While the Averaging algorithm can
potentially stabilize the video the most effectively out of
the three algorithms this results in a blurring effect which
can be detected by the aberration metric.

6.4  Modulation Transfer Function (MTF)

The blurring effect of the atmosphere suppresses the
higher spatial frequencies that can be seen in an image.
MTF analysis allows one to measure how much various
spatial frequencies are degraded by the atmosphere. This
determines the level of spatial detail that is visible in a
given image or video.

The MTF (Modulation Transfer Function) provides the
spatial frequency response of the video sequence in
question. A higher response will mean that the specific
spatial frequencies are more visible. From the figures it is
apparent that the MTF curve of the unprocessed video
exhibits a steeper gradient than the MTF curves of the
processed video sequences.

In the lowest frequencies there is not a striking
improvement for any of the three algorithms but it can be
seen that the three algorithms do improve the MTF curve
at these frequencies somewhat. The Horn-Schunck based
algorithm performed the best at the lowest frequencies.

The frequencies that we are the most interested in are the
high spatial frequencies, as these frequencies are the
worst affected by blurring and contain the spatial detail
we are trying to restore. It is apparent that these
frequencies also show the biggest variation in results
between the three algorithms.

The Wiener filtering and Averaging algorithm performs
the worst out of the three algorithm and at times seems to
worsen the MTF response when compared to the
unprocessed video. This is due to the blurring effect of
the averaging portion of the algorithm which will degrade
the higher frequencies present in the video. It is clear that
the Lucas-Kanade based algorithm has the shallowest
curve and highest response at the higher frequencies. The
Horn-Schunck based algorithm has the second best
response and shows an increase in the MTF curve for the
entire range of spatial frequencies.

6.5 Final remarks

From the various metrics it is apparent that the Lucas-
Kanade based Dewarping algorithm appears to produce
the sharpest and most stable video results of the three
algorithms under consideration. It can also been seen that
the Laplacian operator sharpness metric is over sensitive
to high frequency noise and as such is not a useful
measure of sharpness on its own.
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Figure 13: MTF Curve of Averaging Algorithm
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Figure 15: MTF curve of Horn-Schunck based dewarping
algorithm

7  CONCLUSION

Long range surveillance systems have numerous
advantages within the military and civil fields, however at
long distances, the atmospheric turbulence caused by the
heat of the earth’s surface distorts the received image
making object identification difficult. There are a number
of approaches to mitigating the effect of the turbulent
atmosphere and numerous documented algorithms in the
literature. There are however no clear comparisons
between algorithms and the metrics that could be used to
compare the performance of these algorithms

In this paper three algorithms were implemented based on
techniques described in the literature. A number of
performance metrics were proposed and used to attempt
to compare the performance of these algorithms. Human
assessment was used to determine whether the metrics
were providing realistic and pertinent information about
the video scenes under consideration.

The performance metrics all seemed to provide valuable
insight into the performance and natures of the
algorithms. However it was found that the Laplacian
sharpness metric was overly sensitive to high frequency
noise and as such is not a useful metric when used in
isolation.

Using the proposed metrics, we found that the Wiener
filtering and Averaging algorithm does stabilize the
geometric distortion present in the video, but it does so at
the price of introducing further blurring. The Wiener
filtering and Optical flow based methods seemed to
provide stable and sharper results. Of these two
algorithms the Lucas-Kanade based algorithm seemed to
perform the best resulting in the most stable and sharp
output out of the three algorithms.

The GPU implementation of the Lucas-Kanade based
algorithm was fairly successful with only a few stages
that required intensive redesign to allow for better
exploitation of the parallel GPU architecture. The issue of
recursion was easily solved using a ping pong approach
and a vertex shader was used to implement the scattering
operation used for dewarping.

The Averaging algorithm does, however, seem to have
the lowest computational requirements of the three
algorithms, but the GPU implementation of the Lucas-
Kanade based algorithm did provide a significant speed
increase and promises easy scalability to achieve real-
time processing speeds in the future.

8  FUTURE WORK

The purpose of this study was to provide an entry point
into the topic of mitigating the effects of atmospheric
turbulence on video captured over a long range. As such
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there is much more possible work to be done to take the
first steps presented in this study and produce a fully
functional real world system to address the problem of
heat shimmer.

A few specific areas that need improvement are as
follows:
e Develop a more advanced dewarping scheme,
e Improve the accuracy of the optical flow
methods,
e Develop a non-uniform deblurring scheme,
e Improve the GPU implementation.
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