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Abstract: In this letter, a general auto-correlation based frequency offset estimation (FOE) algorithm
is analyzed. An approximate closed-form expression for the Mean Square Error (MSE) of the FOE
is obtained, and it is proved that, given training symbols of fixed length N, choosing the number of
summations in the auto-correlation to be �N

3 � and the correlation distance to be � 2N
3 � is optimal in that

it minimizes the MSE. Simulation results are provided to validate the analysis and optimization.
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1. INTRODUCTION

Carrier Frequency Offset (CFO), caused by frequency
deviation between a transmitter and a receiver exists
in most communication systems and may result in
severe performance degradation or even system failure.
Therefore, estimation and compensation of frequency
offset in communication systems is important in order to
allow coherent demodulation of the transmitted signals.
Compared to single-carrier modulation, Orthogonal Fre-
quency Division Multiplexing (OFDM) is more sensitive
to frequency offset because it introduces Inter-Carrier
Interference (ICI) and destroys the orthogonality among
sub-carriers [1]. To mitigate the negative impact of
frequency offset, continuous efforts have been made
to develop efficient Frequency Offset Estimation (FOE)
algorithms.

FOE can be done in the time or frequency domain. In
OFDM systems, time-domain algorithms are typically
used to estimate the initial frequency offset and
frequency-domain algorithms are used to track the
residual frequency offset. Time-domain FOE algorithms
generally rely on the auto-correlations between two
specially designed training signal segments [2–5]. Further
enhancements of utilizing training signals composed
of multiple identical segments have been proposed
in [7, 8]. [9] gives a comparative study of the Schmidl-Cox
(SC) [5] and Morelli-Mengali (MM) [6] algorithms for
frequency offset estimation in OFDM, along with a new
least squares (LS) and a new modified SC algorithm.
In [10], the author proposes a novel maximum likelihood
(ML) based algorithm for estimating the timing offset and
carrier frequency offset in OFDM systems under dispersive
fading channels.

Although auto-correlation based FOE algorithms have
been used in many practical systems, the performance

Figure 1: Autocorrelation based FOE

analysis and optimization of the algorithms has not yet
been thoroughly investigated. In this letter, a general
auto-correlation based FOE algorithm is analyzed, a
closed-form expression for the Mean Square Error (MSE)
is derived, and it is proved that if the training symbol
length is fixed to be N, to minimize the MSE, the optimal
number of summations in the auto-correlation should be
�N

3 � and the optimal auto-correlation distance equals � 2N
3 �.

This letter is organized as follows: Section 2 introduces a
general auto-correlation based frequency offset algorithm.
The main result is presented in Section 3. Section 4
presents simulation results and some discussions. Finally,
conclusions are drawn in Section 5.

2. AUTO-CORRELATION BASED FREQUENCY
OFFSET ESTIMATION

A quasi-static dispersive channel that contains L resolvable
multi-paths can be denoted by {hl}L−1

l=0 . Let sn be the n-th
transmitted training symbol with unit energy, then the n-th
received symbol can be expressed as

yn = e jθn
L−1

∑
l=0

hlsn−l + vn, (1)

where vn is the AWGN with zero mean and variance σ2

and θn is the rotation angle at the n-th symbol caused by
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the frequency offset. In (1), it is assumed that the rotation
angles for L consecutive symbols are approximately the
same, this is valid if the frequency offset is not absurdly
large.

Let Δ fs be the true frequency offset and Ts be the symbol
interval, then θn can be expressed as θn = nΔθ, where Δθ
is the rotation angle per symbol, and is defined as

Δθ � 2πTsΔ fs. (2)

Auto-correlation based FOE relies on training symbols of
length N that are composed of multiple identical segments,
each segment has Ms symbols. A sensible design should
have Ms � L.

The auto-correlation metric between yn and yn+D1 is

Q(M1) =
1

M1

M1

∑
n=1

(y†
n)(yn+D1), (3)

where ()† denotes complex conjugation, D1 is called
the“auto-correlation distance”, M1 is the number of
summations in the auto-correlation and is called the “com-
plementary auto-correlation distance”. Fig.1 illustrates
the autocorrelation based FOE, from Fig.1 it is clear that
D1 = N −M1.

Having obtained Q(M1), the frequency offset can be
estimated as [2, 3]

Δ f̂s =
∠Q(M1)

2πD1Ts
. (4)

If Δ fs is in the range
(
− 1

2D1Ts
, 1

2D1Ts

)
, equation (4) can

provide correct estimation, otherwise there exists a 2π
or multiples of 2π phase ambiguity. In this case, the
correct rotated angle should be ∠Q(M1)+ 2πd instead of
∠Q(M1), where d is an integer. To resolve the phase
ambiguity, another auto-correlation metric with a shorter
auto-correlation distance D2 � (N −M2) can be used, i.e.,
calculating

Q(M2) =
1

M2

M2

∑
n=1

(y†
n)(yn+D2), (5)

where M2 is the corresponding complementary
auto-correlation distance. Clearly, the two auto-correlation
metrics have the relation

D1

D2
∠Q(M2)≈ ∠Q(M1)+2πd, (6)

and the 2πd phase ambiguity can be estimated as

d̂ =

〈 D1
D2

∠Q(M2)−∠Q(M1)

2π

〉
, (7)

where �·� is the rounding operation. Then, the estimated

Figure 2: Illustration of angle approximation induced by ṽ(M1)

frequency offset equals

Δ f̂s =
∠Q(M1)+2πd̂

2πD1Ts
. (8)

In the autocorrelation based FOE algorithm introduced
above, the FOE precision is mainly determined by M1 and
the range of resolved frequency offset is determined by
M2. In the following, we analyze the performance of the
auto-correlation based FOE algorithm, and show how to
optimize the algorithm.

3. PERFORMANCE ANALYSIS AND PARAMETER
OPTIMIZATION

For the auto-correlation based FOE algorithm, clearly, the
larger the auto-correlation distance (i.e., D1 or D2) is, the
finer the estimated frequency offset, and the better the
performance. However, given a fixed training symbol
length N, large auto-correlation distances mean smaller
complementary auto-correlation distances (i.e. M1 or
M2). The smaller the complementary auto-correlation,
the lesser the number of samples used to calculate
the auto-correlation metric and thus leading to poor
performance. Therefore, given N, there is an optimal
auto-correlation distance where the MSE is minimized.

Since M2 is only used to resolve the ambiguity, it is
sufficient to choose M2 to satisfy the following inequality

−π < 2π(N −M2)Δ fsTs < π. (9)

In the following, we only focus on how to optimize the
parameter M1. We first derive the MSE of the estimated
frequency offset with complementary auto-correlation
distance M1.

Because of the repeated segments, D1 is a multiple of Ms,
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and yn+D1 equals

yn+D1 = e j(n+D1)Δθ
L−1

∑
l=0

hlsn+D1−l + vn+D1

= e j(n+D1)Δθ
L−1

∑
l=0

hlsn−l + vn+D1 . (10)

Let us define zn � ∑L−1
l=0 hlsn−l . Assuming independent

and unit energy training symbols sn, we have E
[
�zn�2

]
=

�h�2 � ∑L−1
l=0 �hl�2, and as M1 gets large, we have the

following approximation

1
M1

M1

∑
n=1

�zn�2 ≈ �h�2. (11)

Substituting (10) into (5) and using the above approxima-
tion, Q(M1) can be expressed as

Q(M1) =
1

M1

M1

∑
n=1

�zn�2e jD1Δθ + ṽ(M1)

≈ �h�2e jD1Δθ + ṽ(M1), (12)

where ṽ(M1) is called the “noise term” for FOE and is
given by

ṽ(M1) = A+B+C, (13)

where A, B and C are defined as:

A � 1
M1

M1

∑
n=1

(
v†

nzne j(n+D1)Δθ
)
, (14)

B � 1
M1

M1

∑
n=1

(
vn+D1 z†

ne− jnΔθ
)
, (15)

C � 1
M1

M1

∑
n=1

(
v†

nvn+D1

)
. (16)

Using equation (12) and resolving the 2πd ambiguity, we
obtain

∠Q(M1)+2πd = D1Δθ+α, (17)

where α is the angle induced by noise term ṽ(M1). Note
that α �= ∠ṽ(M1), instead, it is the angle between Q(M1)
and e jD1Δθ (See Fig.2).

The estimation of Δ fs in equation (8) can be derived as

Δ f̂s = Δ fs +
α

2πD1Ts
. (18)

Δ f̂s is later shown to be an unbiased estimator, and the
MSE of the estimated frequency offset is given by

R �
E
[
�α�2

]

4π2D2
1T 2

s
. (19)

To get optimal FOE performance, M1 should be chosen to
satisfy

Mopt
1 = argmin

M1
{R} . (20)

The following theorem summarizes the main result of this
letter, which gives Mopt

1 , and the minimum MSE.

Theorem 1: For a system with N training symbols
for FOE, the optimal complementary auto-correlation
distance that minimizes the MSE of the estimated frequency
offset is

Mopt
1 =

〈
N
3

〉

and the corresponding minimum MSE is approximately

Rmin ≈ 1

8π2T 2
s
(
N −

〈N
3

〉)〈N
3

〉2

(
2

SNR
+

1
SNR2

)
,

where SNR � �h�2

σ2 .

Proof: Expanding the expectation of �ṽ(M1)�2 in
(13), we have

E
[
�ṽ(M1)�2] = E

[
�A+B�2]+E

[
(A+B)C†

]

+E
[
C(A+B)†

]
+E

[
�C�2] .

Since vn is a complex Gaussian random variable with zero
mean, we have E

[
(A+B)C†

]
= 0 and E

[
C(A+B)†

]
= 0.

Therefore, E
[
�ṽ(M1)�2

]
can be simplified to

E
[
�ṽ(M1)�2]= E

[
�A+B�2]+ σ4

M1
. (21)

Case 1: M1 ≤
〈N−1

2

〉

In this case, there is no overlap between vn and vn+D1 for
n = 1,2, · · · ,M1, so A and B are independent zero mean
circular complex Gaussian random variables. Since ṽ(M1)
does not favor any specific direction, we have E [α] =
0. This makes Δ f̂s given in equation (18) an unbiased
estimator.∗

Based on the illustration in Fig.2, assuming M1 is large, in
high SNR scenarios, the angle α can be approximated as

α ≈ �ṽ(M1)�sinϕ
�h�2 , (22)

where ϕ is the angle between ṽ(M1) and e jD1Δθ. In this

∗It is important to note that the distribution of α in equation(18) is
unknown even though the first and second moments are known. Since the
distribution is unknown, the CRLB cannot be derived for this dedicated
case.
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case, R can be approximated as

R ≈
E
(
�ṽ(M1)�2

)
−E

(
cos2ϕ�ṽ(M1)�2

)

8π2D2
1T 2

s �h�4
.

We also have

E
[
cos2ϕ�ṽ(M1)�2]= 0, (23)

where we have applied the property that ϕ is uniformly
distributed and independent to the length of �ṽ(M1)�.

The expectation E
[
�ṽ(M1)�2

]
equals

E
[
�ṽ(M1)�2] = E

[
�A�2]+E

[
�B�2]+ σ4

M1

≈ 2�h�2σ2 +σ4

M1
. (24)

Using the relation D1 = N −M1 and combining equations
(23) and (24), R becomes

R1 ≈ 2�h�2σ2 +σ4

8π2T 2
s �h�4M1(N −M1)2

=
1

8π2T 2
s M1(N −M1)2

(
2

SNR
+

1
SNR2

)
. (25)

The optimization problem (20) is now equivalent to

Mopt
1 = argmax

M1

{
M1(N −M1)

2} . (26)

It is not difficult to show that

Mopt
1 =

〈
N
3

〉
, (27)

and the corresponding minimum MSE is

Rmin =
2

SNR + 1
SNR2

8π2T 2
s
(
N −

〈N
3

〉)〈N
3

〉2 . (28)

Case 2: M1 >
〈N−1

2

〉

In this case, A and B are NOT independent anymore
because the (k+D1)-th term in A, which is

Ak+D1 =
v†

k+D1
zk+D1 e j(k+D1)Δθe jD1Δθ

M1
, (29)

and the k-th term in B, which is

Bk =
vk+D1z†

ke− jkΔθ

M1
=

vk+D1 z†
k+D1

e− jkΔθ

M1
, (30)

are correlated, and the terms Ak+D1 + Bk for k =

1,2, · · · ,(M1 −D1) are along the same direction as e jD1Δθ,

because Ak+D1 +Bk can be written as

Ak+D1 +Bk =
2ℜ

{
v†

k+D1
zk+D1e j(k+D1)Δθ

}
e jD1Δθ

M1
.

Regrouping the terms in A+B, we obtain

A+B =
D1

∑
n=1

(An +Bn+M1−D1)+
M1

∑
k=D1+1

Ak +Bk−D1

︸ ︷︷ ︸
�w(M1)

,

where w(M1) is the summation of correlated terms and is
along the direction of e jD1Δθ, so it has no contribution to
the angle α. Then, ṽ(M1) can be re-written as

ṽ(M1) =

(
D1

∑
n=1

(An +Bn+M1−D1)+C

)

︸ ︷︷ ︸
�
=u(M1)

+w(M1). (31)

Using similar arguments as in Case 1, we have E [α] = 0,
which leads to an unbiased estimation of Δ f̂s given by
equation (18).

Based on the illustration in Fig.2, we can approximate the
angle α as

α ≈ �u(M1)�sinϕ
�h�2 , (32)

where ϕ is the angle between u(M1) and e jD1Δθ.

Following the same procedure as in Case 1, we have

E
[
�u(M1)�2

]
≈ 2(N −M1)�h�2σ2

M2
1

+
σ4

M1
, (33)

and the corresponding MSE equals

R2 ≈
(

2
SNR

8π2T 2
s M2

1(N −M1)
+

1
SNR2

8π2T 2
s M1(N −M1)2

)
.

(34)
Define L(M1) � 1

8π2T 2
s M1(N−M1)2SNR and D � L(Mopt

1 ),

where Mopt
1 is given by equation (27). R1 and R2 given by

equations (25) and (34), respectively can then be re-written
as

R1(M1) = L(M1)

(
2+

1
SNR

)

R2(M1) = L(M1)

(
2N
M1

−2+
1

SNR

)

We know that L(M1) ≥ D, and the minimum value of R1
is Rmin

1 = D(2+ 1
SNR ). To complete the proof we show that
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Figure 3: Validation of approximated analysis and parameter
optimization.

R2(M1)> R1(M
opt
1 ) = D

(
2+ 1

SNR

)
.

L(M1) ≥ D (35)

R2(M1) ≥ D
(

2N
M1

−2+
1

SNR

)
(36)

(37)

R2 is bounded by

R2(M1) > D
(

2N
(N/2)

−2+
1

SNR

)
(38)

R2(M1) > D(2+A) = Rmin
1 (39)

Therefore, the minimum MSE in Case 1 is a global
minimum.

4. SIMULATION VALIDATIONS AND DISCUSSION

To validate the analysis and optimization, we consider a
communication system that has N = 500 symbols, Δ fs =
10kHz, and 1/Ts = 1MHz. To satisfy (9), we choose M2 =
480 symbols.

The simulated and theoretical results of MSE vs. M1 are
shown in Fig.3. It can be seen that the MSE calculated
from our analysis matches the simulated MSE very well,
and the minimum MSE is achieved when M1 = 167 =〈 500

3

〉
, as predicted by Theorem 1.

From Fig.3, it can be observed that the curve for SNR =
10dB is more symmetric than the curve for SNR = 0dB
and the local minimum in the curve of SNR = 10dB is
closer to the global minimum. This is because at high
SNRs, the 1

SNR2 term in (25) and (34) can be ignored
and the MSE becomes R ≈ 2

8π2T 2
s M1(N−M1)2(SNR) and R ≈

2
8π2T 2

s M2
1(N−M1)(SNR)

, for Case 1 and Case 2, respectively.

They are symmetric to the center M1 =
〈N−1

2

〉
and reach

the same minimum when M1 =
〈N

3

〉
and M1 = N −

〈N
3

〉
,

respectively.

As a last comment, from the closed-form MSE formulas,
we can see that, when N is fixed, the MSE of FOE is just a
function of M1 and SNR, and is independent of Δ fs.

5. CONCLUSION

In this letter, a general auto-correlation based FOE
algorithm was analyzed, closed-form expressions of the
MSE were derived, and it was proved that the optimal
complementary auto-correlation distance equals

〈N
3

〉
,

where N is the total number of training symbols. The
results obtained in the letter can be of practical usage
when designing training symbols in the implementation of
auto-correlation based FOE algorithms.
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